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Abstract

Purpose – This paper aims to predict aerodynamic heating through the efficient solution of
three-dimensional viscous shock layer (VSL) equations, using axisymmetric analog.

Design/methodology/approach – The three-dimensional VSL equations are written in the
curvilinear streamline coordinate system. In these equations, normal momentum equation is replaced
by Maslen’s pressure relation. In addition to this, axisymmetric analog is implemented along the
streamlines through assuming a zero value for circumferential velocity component. In this case,
three-dimensional VSL equations are reduced into an axisymmetric form, which can be solved much
easier.

Findings – It is demonstrated that the solution of three-dimensional VSL equations in the curvilinear
streamline coordinate system, using axisymmetric analog, has made it possible to predict convective
heat fluxes in both windward and leeward regions. Moreover, in comparison with the 3D VSL
methods, the present approach dramatically reduces the CPU time of calculations. Comparison with
the experimental and numerical data shows a good agreement between both of these data and the
present results.

Practical implications – This method is an excellent tool for parametric study and preliminary
design of hypersonic vehicles.

Originality/value – This method can predict convective heat flux in the leeward region where other
similar methods are not applicable. In addition to this the present method is faster than other methods
of solution for the 3D VSL equations.
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Nomenclature
e �j; e �b; e�n ¼ unit vectors of streamline

curvilinear coordinate system
h �j; h �b ¼ scale factors of streamline

coordinate system
k �j; k �b ¼ streamline curvatures
�u ¼ streamline orientation
Pr ¼ Prandtl number
P ¼ pressure
nb ¼ shock standoff distance
T ¼ temperature

�G; �dw ¼ body angles
RN ¼ nose radius
u, v, w ¼ velocity components
q ¼ heat transfer rate
e�s; e�t ¼ tangential unit vectors on body

surface
1 ¼ Reynolds parameter,

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mref=ðr1u1RNÞ

p
1 þ ¼ ratio of eddy viscosity to

dynamic viscosity, mt/m
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ex; er; ew ¼ unit vectors of cylindrical
coordinate system

~j; ~b;hn ¼ computational coordinate system
r ¼ density
m ¼ viscosity
x, r, w ¼ cylindrical coordinate system
a ¼ angle of attack

Subscripts
1 ¼ freestream condition
N ¼ nose
ref ¼ reference quantities
w ¼ wall
b ¼ body

1. Introduction
Aerodynamic heating is the most important parameter for the design of hypersonic
vehicles, since it is a function of speed cubed. For the calculation of aerodynamic heating,
the surface convective heat transfer coefficient must be determined. Such results may be
obtained through the numerical solution of the Navier-Stokes (NS) equations (Gnoffo,
1990; Miyaji and Fujii, 1999) or one of their various subsets such as the Parabolized
Navier-Stokes (PNS) equations (Helliwell et al., 1981; Bhutta and Lewis, 1991) or viscous
shock layer (VSL) equations (Maslov et al., 1999; Gupta et al., 1994, 1990).

Considerable attentions have been paid to the VSL equations since their solution
needs less CPU times in comparison with the solution of NS and PNS equations
(Anderson and Moss, 1975; Srivastava et al., 1977). Moreover, VSL equations can be
applied to both subsonic and supersonic regions. However, since the solution of
three-dimensional VSL equations requires large computer storage and CPU time, this
approach is not appropriate for a preliminary design where several geometries and
flight trajectories are considered. To resolve this difficulty, approximate solution of
VSL equations are proposed.

Grantz et al. (1990) added boundary-layer-like viscous terms to the inviscid
streamwise momentum and energy equations, written in the shock coordinate system,
to obtain a parabolic set of equations similar to the full axisymmetric VSL equations.
They employed the second-order Maslen (1964) pressure relation instead of normal
momentum equation, and employed a simple linear relation to express the component
of velocity normal to the surface. Since, the shock shape was a part of the solution, no
initial shock shape was necessary. This approximate axisymmetric VSL method of
Grantz et al. had three disadvantages:

(1) too many iterations were required for shock shape convergence;

(2) the solution was inconsistent near the stagnation line; and

(3) the choice of node spacing across the shock layer was the cause of oscillations in
the profiles of shock layer properties.

Cheatwood and DeJarnette (1994) developed another approximate axisymmetric VSL
method. They started with the full axisymmetric VSL equations in a shock coordinate
system. In these equations, they replaced the normal momentum equation by Maslen’s
second-order relation to calculate the pressure. The normal component of velocity,
however, was calculated from the solution of continuity equation. In this method, shock
shape is also determined as a part of the solution in both regions of subsonic and
supersonic. The above-mentioned disadvantages of Grantz’s method were resolved by
this method of Cheatwood and DeJarnette. In addition, the method of Grantz et al. was
not able to reduce the CPU time of calculation as compared with the solution of full
VSL equations (Cheatwood and DeJarnette, 1994).
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Malekzadeh Dirin et al. (2003) starting by writing the full three-dimensional VSL
equations in a shock-oriented curvilinear coordinate system. In these equations, they
replaced the normal momentum equation with the modified form of the Maslen’s
second-order pressure relation. They also solved the continuity equation to calculate
the normal component of velocity. It is noted that in this work Malekzadeh Dirin et al.
(2003) solved the three-dimensional VSL equations, in which, the shock shape was
determined using the algorithm of Riley and DeJarnette (1992). As claimed by them,
this method is three to five times faster than the original 3DVSL methods.

In all of the approximate methods, flow properties and aerodynamic heating are
calculated only in the windward region. So the need for a fast method to calculate
aerodynamic heating in the leeward region has been left unaddressed. To address this
need, we applied axisymmetric analog (Cook, 1961) to the three-dimensional VSL
equations, written in the streamline coordinate system. With this approximation the
solution for circumferential velocity component,w, is not required anymore since it is set
equal to zero. Maslen’s second-order pressure relation is still solved instead of normal
momentum equation, and continuity equation is solved to obtain normal component of
velocity, v. With the use of streamline coordinate system, the calculation of aerodynamic
heating in the leeward region becomes possible. Such an idea was used earlier by Kim
et al. (1982) for the solution of the PNS equations. It is noted that the shock shape and the
streamline orientations, which are required in the present method, are obtained using the
algorithm of Riley and DeJarnette (1992). The orientations of streamlines in the leeward
region, however, are calculated using the method of Karimian et al. (2003). The required
CPU time of the present method for the solution of 3D VSL equations is less than that of
Malekzadeh Dirin et al. (2003). Based on these achievements, the present method would
be very attractive for the preliminary design studies of hypersonic vehicles.

2. Analysis
For the first time, Cook (1961) applied axisymmetric analog for the solution of
three-dimensional boundary layer equations. This idea simplifies the equations and
reduces the solution time dramatically by increasing the rate of convergence. Since,
VSL equations are similar to the boundary layer equations, it is possible to apply the
axisymmetric analog to the VSL equations. This is done through:

. derivation of the 3D VSL equations in the streamline curvilinear coordinate
system; and

. applying axisymmetric analog along the streamlines in these equations.

As a result an axisymmetric form of VSL equations, valid along the streamlines, is
obtained which dose not contain the crossflow velocity component, w.

Before the derivation of the above-mentioned axisymmetric form of VSL equations, we
first present a description of streamline curvilinear coordinate system, and the method of
determining surface-streamline orientations. Note that all of the variables used in this
analysis are nondimensionlized by the reference quantities, presented in Appendix 1.

2.1 Coordinate system and streamline orientations
The streamline curvilinear coordinate system ð �j; �b; �nÞ is shown in Figure 1.
�j and �b represent coordinates of a point on the body surface and �n is the distance
normal to the body. The unit vectors of this coordinate system is defined as, e �j which
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is in the streamline direction and tangent to the body, e �b that is perpendicular to e �j and
tangent to the surface, and e �n which is perpendicular to e �j; e �b:

The surface of body is defined in the cylindrical coordinate system by rb ¼ �fðx;wÞ.
Unit vectors of streamline curvilinear coordinate system, now can be defined in terms
of ex; er; ew; as:

e �j ¼ cos �u · e�s þ sin �u · e�t

e �b ¼ 2sin �u · e�s þ cos �u · e�t

e �n ¼ 2sin �G · ex þ cos �G cos �dw · er 2 cos �G sin �dw · ew

ð1Þ

where the tangential unit vectors on body surface ðe�s; e�tÞ are defined as:

e�s ¼ cos �G · ex þ sin �G cos �dw · er 2 sin �G sin �dw · ew

e�t ¼ sin �dw · er þ cos �dw · ew
ð2Þ

and the body angles �Gðx;wÞ and �dwðx;wÞ are defined as:

tan �G ¼
›�f

›x
cos �dw; tan �dw ¼

1
�f

›�f

›w
ð3Þ

In equation (1), �u denotes the angle between the streamlines and e�s. Therefore, if �u is
determined on the body surface in windward and leeward regions, the streamline
orientation would be determined on the surface.

The orientation of streamlines on the body surface in the windward region is found
by applying momentum equations along the body surface in conjunction with the
pressure distribution obtained from the inviscid solution (Riley and DeJarnette, 1992;
Karimian and Malekzadeh Dirin, 2001). Consequently, the following expression is
obtained:

1

h �j

› �u

› �j
¼ 2

sin �G

h �j

› �s

› �j
2

1

rb �u
2
b

1

h �b

›Pb

› �b
ð4Þ

where �s ¼ w2 �dw: The scale factor h �b is determined using the method of Karimian
and Malekzadeh Dirin (2001).

Figure 1.
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In the leeward region, however, a linear interpolation which is based on the actual
physical pattern of the flow in this region (Karimian et al., 2003), is used to determine
the streamline orientation as:

�u ¼ 2 �up=2 2
1

p
wb þ 1

� �
p

2
# wb # p ð5Þ

Now, with the determination of streamlines orientation, governing equations can be
written along the streamline.

2.2 Governing equations
The 3DVSL equations for laminar, perfect gas flow were developed by Murray and
Lewis (1978) in a body-oriented coordinate system. These equations were presented in
a shock-oriented coordinate system by Malekzadeh Dirin et al. (2003).

In this paper, 3D VSL equations for laminar and turbulent flows are written in the
streamline curvilinear coordinate system of ð �j; �b; �nÞ. For the sake of simplicity,
the governing equations are transferred to the computational space of ð ~j; ~b;hnÞ, where:

~j ¼ �j; ~b ¼ �b; hn ¼ 1 þ
�n

nb
ð6Þ

and are presented in the form of:

A0
›2W

›h2
n

þ A1
›W

›hn
þ A2W þ A3 þ A4

›W

› ~j
þ A5

›W

› ~b
¼ 0 ð7Þ

In the above equation, W represents the dependent variables u, w and h for ~j
momentum, ~b momentum and energy equations, respectively. The nonlinear
coefficients A0, A1, A2, A3, A4 and A5, are presented in Appendix 2.

The continuity equation is written in the form of:

M
›

› ~j
ðru�h3Þ þ ðMD þ NFÞ

›

›hn
ðru�h3Þ þ N

›

› ~b
ðru�h3Þ2 A

›

›hn
ðrv�h1

�h3Þ

þ G
›

› ~j
ðrw�h1Þ þ ðGD þ KFÞ

›

›hn
ðrw�h1Þ þ K

›

› ~b
ðrw�h1Þ ¼ 0

ð8Þ

where:

�h1 ¼ h �jð1 þ �nk �jÞ

�h3 ¼ h �bð1 þ �nk �bÞ
ð9Þ

and streamline curvatures are defined as:

k �j ¼ 2
1

h �j

› �G

› �j
; k �b ¼ 2

cos �G

h �b

› �G

› �b
ð10Þ

In the above relations the coefficients of A, D and F are defined as:

A ¼ 2
1

nb
; D ¼ 2

ðhn 2 1Þ

nb

dnb

d �j
; F ¼ 2

ðhn 2 1Þ

nb

dnb

d �b
ð11Þ

HFF
18,1

40



The values of M, N, G and K are functions of streamline curvatures, the distance
between body and shock, body angles and shock angles.

At this stage, where the governing equations are obtained in the streamlines
curvilinear coordinate,w is set equal to zero, in order to implement the idea of axisymmetric
analog.

3. Method of solution
The governing equations that will be solved in this paper are the equations obtained
in Section 2.2 in which w is set equal to zero. The shock shape which should be
known before the solution of governing equations, is determined using the inviscid
method of Riley and DeJarnette (1992). At each ~j, the governing equations are solved
along the hn lines between the shock wave and the body; see Figure 2. At the shock
wave, which is the outer boundary of the solution domain, the Rankine-Hugoniot
relations are used to calculate the flow conditions at this boundary. At the surface of
the body, no-slip boundary condition is applied and temperature is set equal to a
fixed value.

Starting from the stagnation region, the first hn line would be the stagnation line. The
governing equations along the stagnation line would be the limiting form of these
equations which are obtained assuming ~j! 0 (Malekzadeh Dirin et al., 2002). For the rest
of the domain, the solution is marched along the ~j coordinate. At each ~j Maslen’s (1964)
pressure relation, streamwise momentum equation and energy equation are solved,
along the hn lines distributed in ~b direction around the body, to obtain pressure,
tangential velocity, and enthalpy, respectively. Density is, then, calculated from the
equation of state.

Finally, the normal velocity is obtained through the solution of the continuity
equation. The derivatives of ~j; ~b in the governing equations are discretized using
two-point backward difference scheme. The difference scheme used for the derivatives
of hn is the second order and central. The final forms of discretized equations are
solved using Thomas algorithm.

Figure 2.
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In this paper, the Cebeci-Smith eddy-viscosity turbulence modeling (Cebeci and Smith,
1974) is employed in the system of equations. Cebeci-Smith model is a two-layer
eddy-viscosity formulation whose inner layer value is based on Prandtl’s mixing
length concept and outer layer value is presented by Clauser-Klebanoff expression.

As mentioned at the end of Section 1 (i.e. Introduction), the shock shape and streamline
orientations are obtained from the algorithm of Riley and DeJarnette (1992). Since, we were
able to use this algorithm for axisymmetric bodies, the application of the present method
has been demonstrated for three-dimensional flows around axisymmetric bodies. Note
that the algorithm of Riley and DeJarnette (1992) is limited to blunt cone bodies.

4. Results
In an effort to evaluate the accuracy of this new method, several test cases are
considered. Comparisons are made between the results of the present method, and the
results of the existing numerical methods and experimental data (Cleary, 1969).

Surface heating rates of a 158 half angle blunted sphere-cone at various angles of attack
are calculated. The results include heating rates of both laminar and turbulent flows of
perfect gas in the windward and leeward regions. Two spherical nose radii of 0.00952 and
0.0279 m are considered. The freestream conditions are r1 ¼ 0:00973 kg=m3; T1 ¼
47:38K andM1 ¼ 10:6 with a wall temperature ofTw ¼ 3008K. In the ~j direction, the step
size of 0.1 of RN is used. In hn direction, the nodes are made dense near the body. Our
experience shows that 51 nodes in hn direction are enough to obtain accurate results for
laminar flow. For the ~b direction, D ~b is 58, i.e. 19 nodes are chosen for the half of the
solution domain. The above mentioned grid spacing is determined through the grid
convergence study. This grid convergence study is for both laminar and turbulent flows.
As will be seen, hn larger than 51 does not change the results in laminar part. Similarly,
D ~j # 0:1RN and D ~b # 58 will not change the results in laminar flow.

In Figure 3, the heating rates of laminar perfect gas flow around a 158 sphere cone
with RN ¼ 0.00952 m at 5 and 108 angles of attack are shown on the windward plane.
As is shown, results of present work are in good agreement with experimental data. In
comparison to the method of Malekzadeh Dirin et al. (2003), 33 percent reduction in

Figure 3.
Heat transfer comparison
in windward plane,
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CPU time is observed, which is very important for preliminary design. A detailed CPU
time comparison will be presented later in Table I.

The heating rates calculated by the present method in the leeward plane of a sphere
cone with RN ¼ 0.0279 m at 5 and 108 angles of attack are shown in Figure 4. As is
seen, present results have excellently predicted the qw, obtained from experiments of
Cleary (1969). The small difference between the present results and the experimental
data is due to the thick shock layer which occurs in the leeward region. It is noted that
Maslen’s relation would not be an appropriate assumption for a very thick shock layer.

Circumferential heat transfer results for laminar flow around a blunted cone of
RN ¼ 0.0279 m at 5 and 108 angles of attack are shown in Figures 5 and 6 for two axial
locations of �x ¼ 4:86 and �x ¼ 15:4. As is seen, the accuracy of present results in both
windward and leeward regions is evident when compared with the experimental data.
This demonstrates the capability of the present approximate 3D VSL solver for
prediction of heat transfer rates even in the leeward region.

A CPU time comparison between the results of present method and those of
Malekzadeh Dirin et al. (2003) is presented here. The computer used for this study
includes a Pentium IV processor, and Ram of 512 Meg. The flowfiled and the sphere
cone are the same as the one in Figure 3, however, the solution is marched only up to 10
RN for this CPU time comparison. The results are shown in Table I. As was mentioned
earlier a 33 percent reduction in CPU time is obtained. This time reduction is important
for preliminary design, where consideration of several geometries and flight path is
necessary.

Present method Method of Malekzadeh Dirin et al. (2003)

CPU time (s) 40 60
D ~j=RN 0.1 0.1
No. of nodes in hn 51 51
No. of nodes in ~b 19 19

Notes: 158 sphere cone; RN ¼ 0.00952 m; a ¼ 108 for length of 10 RN

Table I.
CPU time comparison

Figure 4.
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For turbulent flow comparison, the results of the present method are compared with
those of Malekzadeh Dirin et al. (2003). Since, both are numerical results, the credibility
of them are considered first by a grid convergence study. Although the results of this
study, shown in Figures 7 and 8, are from the present method, the same trend is
observed for the results of Malekzadeh Dirin et al. (2003). According to Table II, for
D ~j ¼ 0:03RN and 19 nodes in ~b direction, the effect of various nodes in hn direction is
given through cases a.1-a.5. As seen in Figure 7, there is no changes between a.4 and
a.5 curves. Therefore, 151 nodes in hn direction is enough. Cases b1-b.3 demonstrate
the effect of different D ~j values for fixed node numbers of 151 and 19 in directions hn

and ~b, respectively. As is seen in Figure 8, there is no different between these results.

Figure 5.
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Therefore, a value of D ~j ¼ 0:1RN is appropriate. The effect of different node numbers

in ~b direction can be seen by comparing results of cases a.4 and c in Figure 8. Again as

seen no difference is observed between these results. Therefore, 19 node numbers in ~b

direction is enough.

Now we compare the results of the present method with the results of Malekzadeh

Dirin et al. (2003) for D ~j ¼ 0:1RN; 151 nodes in hn direction, and 19 nodes in ~b direction

Figure 8.
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in Figure 9. The excellent match of both results in turbulent region is clear. Note that
both results are obtained for a fixed transition point of �x ¼ 30.

At the end, we conclude that the present 3D VSL approximate method provides a
computational capability which reduces the CPU time, and expands the range of
application for the prediction of hypersonic heating rates.

5. Conclusions
An approximate axisymmetric method has been developed to calculate
three-dimensional viscous hypersonic flows. In this method, 3D VSL equations are
reduced to an axisymmetric form by using the axisymmetric analog. Normal momentum
equation is still substituted by Maslen equation. Governing equations are solved in a
streamline curvilinear coordinate system to predict surface heating rates in both
windward and leeward regions. With the present method the surface heating rates were
predicted very well when comparing with experimental data. This was achieved with a
33 percent reduction in CPU time when compared to Malekzadeh Dirin et al. (2003).

Cases D ~j=RN No. of nodes in hn direction No. of nodes in ~b direction

a.1 0.03 25 19
a.2 0.03 51 19

a.3 0.03 101 19
a.4 0.03 151 19

a.5 0.03 201 19
b.1 0.015 151 19

b.2 0.06 151 19
b.3 0.1 151 19

c 0.1 151 29

Table II.
Grid specifications for
turbulent cases

Figure 9.
Heat transfer comparison
in windward plane,
RN ¼ 0:0279 m
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In addition calculation of heating rates at the leeward region was also become possible
with the present method.

References

Anderson, E.C. and Moss, J.N. (1975), “Numerical solution of the hypersonic viscous-shock layer
equations for laminar-transitional and turbulent flows of a perfect gas over blunt axially
symmetric bodies”, NASA TN- D-7865.

Bhutta, B.A. and Lewis, C.H. (1991), “Comparison of hypersonic experiments and PNS
predictions, Part I: aerothermodynamics”, Journal of Spacecraft, Vol. 28 No. 4, pp. 376-86.

Cebeci, T. and Smith, A.M.O. (1974), Analysis of Turbulent Boundary Layers, Academic Press,
New York, NY, pp. 215-17, 256, 264.

Cheatwood, F.M. and DeJamentte, F.R. (1994), “Approximate viscous shock-layer technique for
calculating hypersonic flows about blunt. Nosed bodies”, Journal of Spacecraft and
Rockets, Vol. 31 No. 4, pp. 621-8.

Cleary, J.W. (1969), “Effects of angle of attack and bluntness on laminar heating rate distribution
on a 15 degree cone at a Mach number of 10.6”, NASA TN5450.

Cook, J.C. (1961), “An axially symmetric analogue for general three-dimensional boundary layer”,
British A.R.C., R & M, No. 3200.

Gnoffo, P.A. (1990), “An upwind-biased point implicit relaxation algorithm for viscous,
compressible perfect-gas flows”, NASA TP 2953.

Grantz, A.C., DeJarnette, F.R. and Thompson, R.A. (1990), “Approximate viscous-shock layer
method for hypersonic flows over blunt-nosed bodies”, Journal of Spacecraft and Rockets,
Vol. 27 No. 6, pp. 597-605.

Gupta, R.N., Zoby, E.V., Nayani, S.N. and Lee, K.P. (1994), “High-order viscous shock-layer
solutions for high-altitude flows”, Journal of Spacecraft and Rockets, Vol. 31 No. 5, pp. 751-8.

Gupta, R.N., Lee, K.P., Zoby, E.V., Moss, J.N. and Thompson, R.A. (1990), “Hypersonic viscous
shock-layer solutions over long slender bodies – Part I: high Reynolds number flows”,
Journal of Spacecraft, Vol. 27 No. 2.

Helliwell, W.S., Dickson, R.P. and Lubard, S.C. (1981), “Viscous flow over arbitrary geometries at
high angles of attack”, AIAA Journal, Vol. 19 No. 2, pp. 191-7.

Karimian, S.M.H. and Malekzadeh Dirin, M. (2001), “Approximate solution of inviscid flow
around the nose of hypersonic bodies at angle of attack”, Amirkabir Journal, Vol. 12 No. 47.

Karimian, S.M.H., Malekzadeh Dirin, M. and Maerefat, M. (2003), “An engineering
inviscid-boundary layer method for calculation of aerodynamic heating in the leeward
region”, paper presented at 41st CFD Conference.

Kim, M.D., Thareja, R.R. and Lewis, C.H. (1982), “Three-dimensional viscous flowfield
computations in a streamline coordinate system”, Journal of Spacecraft, Vol. 19 No. 1.

Malekzadeh Dirin, M. (2002), “Development of an approximate-engineering method for
calculating of aerodynamic heating and flow analysis in the leeward region of hypersonic
three-dimensional bodies”, PhD thesis, Department of Mechanical Engineering, Faculty of
Engineering, Tarbiat-Modares University, Tehran.

Malekzadeh Dirin, M., Marefat, M. and Karimian, S.M.H. (2003), “Approximate three-dimensional
viscous shock-layer method for hypersonic flow over blunt-nosed bodies”, AIAA Paper
03-154.

Maslen, S.H. (1964), “Inviscid hypersonic flow past smooth symmetric bodies”, AIAA Journal,
Vol. 2, pp. 1055-61.

Numerical
solution of three-
dimensional VSL

47



Maslov, A.A., Mironov, S.G., Poplavaskaya, T.V., Shiplyuk, A.N. and Vetlutsky, V.N. (1999),
“Viscous shock layer on a plate in hypersonic flow”, Eur. J. Mech. B/Fluids, Vol. 18 No. 2.

Miyaji, K. and Fujii, K. (1999), “Numerical analysis of three-dimensional shock/shock interactions
and the aerodynamic heating”, AIAA-99-0144.

Murray, A.L. and Lewis, C.H. (1978), “Hypersonic three-dimensional viscous shock layer flows
over blunt bodies”, AIAA Journal, Vol. 16 No. 12, pp. 1279-86.

Riley, C.J. and DeJarnette, F.R. (1992), “Engineering aerodynamic heating method for hypersonic
flow”, Journal of Spacecraft and Rockets, Vol. 29 No. 3.

Srivastava, B.N., Werle, M.J. and Davis, R.T. (1977), “Viscous shock-layer solutions for
hypersonic sphere-cones”, AIAA Paper, 77-693.

Appendix 1
In this paper, all variables are nondimensionlized by the following relation:

x¼
x0
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; V ¼

V 0
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Appendix 2
Momentum and energy equations may be written in the form of:
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where W represents the dependent variables u, w and h for ~j momentum, ~b momentum and
energy equations, respectively. The nonlinear coefficients A0, A1, A2, A3, A4 and A5 are:
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